Suma de razones en cevianas concurrentes

Si O es un punto cualquiera del interior del △ABC, la suma de los cocientes de las longitudes de los segmentos de ceviana desde los lados hasta O entre las longitudes de las cevianes es igual a 1.

Por ejemplo, la razón entre las áreas de △CAO y △CAB, que tienen la misma base CA, es la misma que la de sus alturas, que por semejanza de triángulos es la misma que EO/EB.

Si en lugar de las distancias desde los lados, se toman las distancias desde los vértices, la suma es:

OA/DA + OB/EB + OC/FC = (1 - DO/DA) + (1 - EO/EB) + (1 - FO/FC)

             = 3 - (DO/DA + EO/EB + FO/FC) = 2


Para el baricentro, en cada caso, los tres cocientes son iguales a y respectivamente.

Ignacio Larrosa Cañestro (Grupo XeoDin), 19 noviembre 2017. Creado con GeoGebra

Página principal