Ambigüedad en la intersección de circunferencia y recta

Para evitar la confusión entre los dos puntos en que una recta corta a una circunferencia (o en que se cortan dos circunferencias) cuando estos se confunden al variar la figura, puede determinarse el segundo punto como el simétrico del primero respecto al diámetro perpendicular a la recta (o al diámetro común).

En la siguiente figura, el punto P recorre la circunferencia circunscrita al triángulo ABC. Su recta de Steiner, rP, corta a la circunferencia de diámetro AH en el ortocentro H y en otro punto A'.

Si se define A' como la intersección de rP y la circunferencia cAH, hay una ambigüedad, pues la recta corta en a la circunferencia también en H. Cuando A' coincide con H, GeoGebra puede confundir los puntos, saltando de una intersecciíon a otra. Pulsando en el botón [ A' = ] se cambia de una definición a otra.

En la figura se traza el lugar geométrico del punto medio M de P y A', que es una elipse de diámetro AMa que pasa por los puntos medios de las alturas hB y hC (los puntos diametralmente opuestos de estos últimos en la elipse, están en b y c). Cuando A' esta definido simplemente por la intersección, parte del lugar geométrico obtenido es incorrecto.

Ignacio Larrosa Cañestro (grupo XeoDin), 22 junio 2013. Creado con GeoGebra

Página principal